Multi-Objective Optimization Control for the Aerospace Dual-Active Bridge Power Converter
نویسندگان
چکیده
منابع مشابه
Backflow Power Optimization Control for Dual Active Bridge DC-DC Converters
Abstract: This paper proposes optimized control methods for global minimum backflow power based on a triple-phase-shift (TPS) control strategy. Three global optimized methods are derived to minimize the backflow power on the primary side, on the secondary side and on both sides, respectively. Backflow power transmission is just a portion of non-active power transmission in a dual active bridge ...
متن کاملActive Power Filter Design by a Novel Approach of Multi-Objective Optimization
This paper presents an innovative active power filter design method to simultaneously compensate the current harmonics and reactive power of a nonlinear load. The power filter integrates a passive power filter which is a RL low-pass filter placed in series with the load, and an active power filter which comprises an RL in series with an IGBT based voltage source converter. The filter is assumed...
متن کاملPerformance Verification of Dual Active Bridge DC-DC Converter
This paper presents the simulation performance of Dual Active Bridge (DAB) DC-DC converter for high power density aerospace applications. The DAB converter topology has been chosen as it features high power density, high efficiency, bidirectional power flow capability, inherent soft switching, galvanic isolation and low number of passive components. Hence the converter is a candidate for high p...
متن کاملSoft-Switching performance of Dual Active Bridge DC-DC Converter
This paper presents the Zero-Voltage Switching (ZVS) performance of Dual Active Bridge (DAB) DC-DC converter for high power density aerospace applications. Switching transitions of the transistor occurring in favorable conditions such as device zero-voltage or zero-current is called as soft-switching. The benefits of soft-switching are reduced switching losses, switch stress, low electromagneti...
متن کاملActive Learning for Multi-Objective Optimization
In many fields one encounters the challenge of identifying, out of a pool of possible designs, those that simultaneously optimize multiple objectives. This means that usually there is not one optimal design but an entire set of Pareto-optimal ones with optimal tradeoffs in the objectives. In many applications, evaluating one design is expensive; thus, an exhaustive search for the Pareto-optimal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2018
ISSN: 1996-1073
DOI: 10.3390/en11051168